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= Stage 1: Given an information-seeking question, the first-stage retriever obtains a 60
set of relevant passages from the evidence.
55
= Stage 2: These passages are attended to by a reader network to generate an answer 50
for the question. : .
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Resea rCh QUEStIOn = UPR improves accuracy of both supervised and unsupervised retrievers by 6%-18%.
= An unsupervised pipeline consisting of Contriever and UPR outperforms supervised
How to Improve the First-Stage Passage Retrieval Accuracy? models like DPR.
Significance Open-Domain Question Answering
= An improvement in retrieved passage rankings directly leads to more accurate B EMDR2 (base) M FiD (base) UPR + FiD (base)
answers. . .
B FiD (large) B UPR + FiD (large)
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UPR: Unsupervised Passage Re-ranking -
We propose an unsupervised re-ranker to improve the ranking of a first-stage retriever. 55
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Question (q) —>| Retriever p Re-Ranker :)eagiggzs = Performance gains up to 3 points by dOlng inference with re-ranked PasSSages.
v v = UPR + FiD pipeline is a more scalable alternative for working with large models.
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3. Compute the log-likelihood of the question tokens conditioned on a passage with S 407
teacher-forcing using a large pre-trained language model. S_,U
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4. Sort the passage ordering based on the log-likelihood score p(q | z;) and select the
top 100 passages for final QA task. = Re-ranking based on passage generation p(z|q) is sub-optimal.
Experimental Settings Passage Candidate Size and Latency
= We select the top-K = 1000 passages for re-ranking. @® Top-20 Accuracy on NQ Dev B Time / Question / A100 GPU (in seconds)
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= We use the instruction-tuned TO (3B) pre-trained language model in UPR.
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No training data is needed.
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Uses off-the-shelf pre-trained language models without finetuning. T 27 59
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Can be applied to both sparse retrievers (such as BM25) and dense retrievers (such 0 100 250 500 750 900 1000

as DPR).

Number of Re-ranked Passages (BM25 retriever)

Leverages rich cross-attention between question and passage tokens resulting in = Pros: Retrieval accuracy improves with a larger pool of candidate passages.
improved passage rankings. = Cons: Latency increases linearly with the number of passages.

EMNLP 2022 Code: https://qgithub.com/DevSinghSachan/unsupervised-passage-reranking
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