Parameter Sharing Methods for Multilingual Self-Attentional Translation Models

Devendra Sachan ${ }^{1}$ Graham Neubig ${ }^{2}$

${ }^{1}$ Data Solutions Team, Petuum Inc, USA
${ }^{2}$ Language Technologies Institute, Carnegie Mellon University, USA

Conference on Machine Translation, Nov 2018

Multilingual Machine Translation

- Goal: Train a machine learning system to translate from multiple source languages to multiple target languages.

Multilingual Machine Translation

- Goal: Train a machine learning system to translate from multiple source languages to multiple target languages.
- Multilingual models follow the multi-task learning (MTL) paradigm

Multilingual Machine Translation

- Goal: Train a machine learning system to translate from multiple source languages to multiple target languages.
- Multilingual models follow the multi-task learning (MTL) paradigm

1. Models are jointly trained on data from several language pairs.

Multilingual Machine Translation

- Goal: Train a machine learning system to translate from multiple source languages to multiple target languages.
- Multilingual models follow the multi-task learning (MTL) paradigm

1. Models are jointly trained on data from several language pairs.
2. Incorporate some degree of parameter sharing.

One-to-Many Multilingual Translation

- Translation from a common source language ("En") to multiple target languages ("De" and "NI")

One-to-Many Multilingual Translation

- Translation from a common source language ("En") to multiple target languages ("De" and "Nl")
- Difficult task as we need to translate to (or generate) multiple target languages.

Previous Approach: Separate Decoders

- One shared encoder and one decoder per target language. ${ }^{1}$
${ }^{1}$ Multi-Task Learning for Multiple Language Translation, ACL 2015

Previous Approach: Separate Decoders

- One shared encoder and one decoder per target language. ${ }^{1}$
- Advantage: ability to model each target language separately.

Previous Approach: Separate Decoders

- One shared encoder and one decoder per target language. ${ }^{1}$
- Advantage: ability to model each target language separately.
- Disadvantages:

1. Slower Training
${ }^{1}$ Multi-Task Learning for Multiple Language Translation, ACL 2015

Previous Approach: Separate Decoders

- One shared encoder and one decoder per target language. ${ }^{1}$
- Advantage: ability to model each target language separately.
- Disadvantages:

1. Slower Training
2. Increased memory requirements

Previous Approach: Shared Decoder

- Single unified model: shared encoder and shared decoder for all language pairs. ${ }^{2}$

[^0]
Previous Approach: Shared Decoder

- Single unified model: shared encoder and shared decoder for all language pairs. ${ }^{2}$
- Advantages:
- Trivially implementable: using a standard bilingual translation model.

[^1]
Previous Approach: Shared Decoder

$\xrightarrow[\text { Source Language: "En" }]{\text { Shared Encoder }} \rightarrow \underbrace{\text { Shared Decoder }}_{\text {Target Language 2: " } \mathrm{Nl} \text { " }}$

- Single unified model: shared encoder and shared decoder for all language pairs. ${ }^{2}$
- Advantages:
- Trivially implementable: using a standard bilingual translation model.
- Constant number of trainable parameters.

[^2]
Previous Approach: Shared Decoder

- Single unified model: shared encoder and shared decoder for all language pairs. ${ }^{2}$
- Advantages:
- Trivially implementable: using a standard bilingual translation model.
- Constant number of trainable parameters.
- Disadvantage: decoder's ability to model multiple languages can be significantly reduced.

[^3]
Our Proposed Approach: Partial Sharing

- Share some but not all parameters.

Our Proposed Approach: Partial Sharing

- Share some but not all parameters.
- Generalizes previous approaches.

Our Proposed Approach: Partial Sharing

- Share some but not all parameters.
- Generalizes previous approaches.
- We focus on the self-attentional Transformer model.

Transformer Model ${ }^{3}$

${ }^{3}$ Attention is all you need, NIPS 2017

Transformer Model ${ }^{3}$

- Embedding Layer

${ }^{3}$ Attention is all you need, NIPS 2017

Transformer Model ${ }^{3}$

- Embedding Layer
- Encoder Layer (2 sublayers)

${ }^{3}$ Attention is all you need, NIPS 2017

Transformer Model ${ }^{3}$

- Embedding Layer
- Encoder Layer (2 sublayers)

1. Self-attention

${ }^{3}$ Attention is all you need, NIPS 2017

Transformer Model ${ }^{3}$

- Embedding Layer
- Encoder Layer (2 sublayers)

1. Self-attention
2. Feed-forward network

${ }^{3}$ Attention is all you need, NIPS 2017

Transformer Model ${ }^{3}$

- Embedding Layer
- Encoder Layer (2 sublayers)

1. Self-attention
2. Feed-forward network

- Decoder Layer (3 sublayers)

${ }^{3}$ Attention is all you need, NIPS 2017

Transformer Model ${ }^{3}$

- Embedding Layer
- Encoder Layer (2 sublayers)

1. Self-attention
2. Feed-forward network

- Decoder Layer (3 sublayers)

1. Masked self-attention

${ }^{3}$ Attention is all you need, NIPS 2017

Transformer Model ${ }^{3}$

- Embedding Layer
- Encoder Layer (2 sublayers)

1. Self-attention
2. Feed-forward network

- Decoder Layer (3 sublayers)

1. Masked self-attention
2. Encoder-decoder attention

${ }^{3}$ Attention is all you need, NIPS 2017

Transformer Model ${ }^{3}$

- Embedding Layer
- Encoder Layer (2 sublayers)

1. Self-attention
2. Feed-forward network

- Decoder Layer (3 sublayers)

1. Masked self-attention
2. Encoder-decoder attention
3. Feed-forward network

${ }^{3}$ Attention is all you need, NIPS 2017

Transformer Model ${ }^{3}$

- Embedding Layer
- Encoder Layer (2 sublayers)

1. Self-attention
2. Feed-forward network

- Decoder Layer (3 sublayers)

1. Masked self-attention
2. Encoder-decoder attention
3. Feed-forward network

- Output generation layer

${ }^{3}$ Attention is all you need, NIPS 2017

Transformer Decoder's Parameters

Embedding Layer

- $\boldsymbol{W}_{E} \in \mathbb{R}^{d_{m} \times V}$

Transformer Decoder's Parameters

Embedding Layer

- $\boldsymbol{W}_{E} \in \mathbb{R}^{d_{m} \times V}$

Masked Self-Attention

- $\boldsymbol{W}_{K}^{1}, \boldsymbol{W}_{V}^{1}, \boldsymbol{W}_{Q}^{1}, \boldsymbol{W}_{F}^{1} \in \mathbb{R}^{d_{m} \times d_{m}}$

Transformer Decoder's Parameters

Embedding Layer

- $\boldsymbol{W}_{E} \in \mathbb{R}^{d_{m} \times V}$

Masked Self-Attention

- $\boldsymbol{W}_{K}^{1}, \boldsymbol{W}_{V}^{1}, \boldsymbol{W}_{Q}^{1}, \boldsymbol{W}_{F}^{1} \in \mathbb{R}^{d_{m} \times d_{m}}$

Encoder-Decoder Attention
$-\boldsymbol{W}_{K}^{2}, \boldsymbol{W}_{V}^{2}, \boldsymbol{W}_{Q}^{2}, \boldsymbol{W}_{F}^{2} \in \mathbb{R}^{d_{m} \times d_{m}}$

Transformer Decoder's Parameters

Embedding Layer

- $\boldsymbol{W}_{E} \in \mathbb{R}^{d_{m} \times V}$

Masked Self-Attention

- $\boldsymbol{W}_{K}^{1}, \boldsymbol{W}_{V}^{1}, \boldsymbol{W}_{Q}^{1}, \boldsymbol{W}_{F}^{1} \in \mathbb{R}^{d_{m} \times d_{m}}$

Encoder-Decoder Attention
$-\boldsymbol{W}_{K}^{2}, \boldsymbol{W}_{V}^{2}, \boldsymbol{W}_{Q}^{2}, \boldsymbol{W}_{F}^{2} \in \mathbb{R}^{d_{m} \times d_{m}}$

Feed-Forward Network
$-\boldsymbol{W}_{L_{1}} \in \mathbb{R}^{d_{m} \times d_{h}}$

- $\boldsymbol{W}_{L_{2}} \in \mathbb{R}^{d_{h} \times d_{m}}$

Parameter Sharing Strategies

- Shareable parameters: embeddings, attention, embedding, linear layer weights.

Parameter Sharing Strategies

- $\Theta=$ set of shared parameters

No Parameter Sharing

- Separate bilingual translation models
$\Theta=\emptyset$

Embedding Sharing

- Common embedding layer
$\boldsymbol{\Theta}=\left\{\boldsymbol{W}_{E}\right\}$

+Encoder Sharing

- Common encoder and separate decoder for each target language
$\boldsymbol{\Theta}=\left\{\boldsymbol{W}_{E}, \boldsymbol{\theta}_{E N C}\right\}$

+Decoder Sharing

- Next, include decoder parameters among the set of shared parameters.

+Decoder Sharing

- Next, include decoder parameters among the set of shared parameters.
- Exponentially many combinations possible: only select a subset.

+Decoder Sharing

- Next, include decoder parameters among the set of shared parameters.
- Exponentially many combinations possible: only select a subset.
- The selected weights are shared in all layers.

Parameter Sharing Strategies

- FFN sublayer parameters are shared
$\boldsymbol{\Theta}=\left\{\boldsymbol{W}_{E}, \boldsymbol{\theta}_{E N C}, \boldsymbol{W}_{L_{1}}, \boldsymbol{W}_{L_{2}}\right\}$

Parameter Sharing Strategies

- Sharing the weights of the self-attention sublayer $\boldsymbol{\Theta}=\left\{\boldsymbol{W}_{E}, \boldsymbol{\theta}_{E N C}, \boldsymbol{W}_{K}^{1}, \boldsymbol{W}_{Q}^{1}, \boldsymbol{W}_{V}^{1}, \boldsymbol{W}_{F}^{1}\right\}$

Parameter Sharing Strategies

- Sharing the weights of the encoder-decoder attention sublayer $\boldsymbol{\Theta}=\left\{\boldsymbol{W}_{E}, \boldsymbol{\theta}_{E N C}, \boldsymbol{W}_{K}^{2}, \boldsymbol{W}_{Q}^{2}, \boldsymbol{W}_{V}^{2}, \boldsymbol{W}_{F}^{2}\right\}$

Parameter Sharing Strategies

- Limit the attention weights to the key and query weights $\boldsymbol{\Theta}=\left\{\boldsymbol{W}_{E}, \boldsymbol{\theta}_{E N C}, \boldsymbol{W}_{K}^{1}, \boldsymbol{W}_{Q}^{1}, \boldsymbol{W}_{K}^{2}, \boldsymbol{W}_{Q}^{2}\right\}$

Parameter Sharing Strategies

- Limit the attention weights to the key and value weights $\boldsymbol{\Theta}=\left\{\boldsymbol{W}_{E}, \boldsymbol{\theta}_{E N C}, \boldsymbol{W}_{K}^{1}, \boldsymbol{W}_{V}^{1}, \boldsymbol{W}_{K}^{2}, \boldsymbol{W}_{V}^{2}\right\}$

Parameter Sharing Strategies

- Sharing all the decoder parameters to have a single unified $\operatorname{model}\left(\boldsymbol{\Theta}=\left\{\boldsymbol{W}_{E}, \boldsymbol{\theta}_{E N C}, \boldsymbol{\theta}_{D E C}\right\}\right)$

Dataset

- Six language pairs from the TED talks dataset. ${ }^{4}$ https://github.com/neulab/word-embeddings-for-nmt
${ }^{4}$ When and Why are Pre-trained Word Embeddings Useful for Neural Machine Translation?, NAACL 2018

Dataset

- Six language pairs from the TED talks dataset. ${ }^{4}$ https://github.com/neulab/word-embeddings-for-nmt
- Languages belong to different linguistic families
${ }^{4}$ When and Why are Pre-trained Word Embeddings Useful for Neural Machine Translation?, NAACL 2018

Dataset

- Six language pairs from the TED talks dataset. ${ }^{4}$ https://github.com/neulab/word-embeddings-for-nmt
- Languages belong to different linguistic families
- Romanian (Ro) and French (Fr) are Romance languages
${ }^{4}$ When and Why are Pre-trained Word Embeddings Useful for Neural Machine Translation?, NAACL 2018

Dataset

- Six language pairs from the TED talks dataset. ${ }^{4}$ https://github.com/neulab/word-embeddings-for-nmt
- Languages belong to different linguistic families
- Romanian (Ro) and French (Fr) are Romance languages
- German (De) and Dutch (NL) are Germanic languages
${ }^{4}$ When and Why are Pre-trained Word Embeddings Useful for Neural Machine Translation?, NAACL 2018

Dataset

- Six language pairs from the TED talks dataset. ${ }^{4}$ https://github.com/neulab/word-embeddings-for-nmt
- Languages belong to different linguistic families
- Romanian (Ro) and French (Fr) are Romance languages
- German (De) and Dutch (NL) are Germanic languages
- Turkish (Tr) and Japanese (JA) are unrelated languages
- Turkish: Turkic family
- Japanese: Japonic family
${ }^{4}$ When and Why are Pre-trained Word Embeddings Useful for Neural Machine Translation?, NAACL 2018

Multilingual Model Training Details

- Extra target language token at the start of source sentence.

Multilingual Model Training Details

- Extra target language token at the start of source sentence.
- Trained using balanced mini-batches for every target language.

Multilingual Model Training Details

- Extra target language token at the start of source sentence.
- Trained using balanced mini-batches for every target language.
- Minimize weighted average cross-entropy loss.

Multilingual Model Training Details

- Extra target language token at the start of source sentence.
- Trained using balanced mini-batches for every target language.
- Minimize weighted average cross-entropy loss.
- Weighting term is proportional to word count in target languages.

Results

Baselines

- GNMT Model: Based on recurrent LSTMs, residual connections, attention

Results

Baselines

- GNMT Model: Based on recurrent LSTMs, residual connections, attention

1. GNMT NS: No Sharing

Results

Baselines

- GNMT Model: Based on recurrent LSTMs, residual connections, attention

1. GNMT NS: No Sharing
2. GNMT FS: Full Sharing

Results

Baselines

- Transformer NS: Separate models for each language pair

Results

Baselines

- Transformer NS: Separate models for each language pair
- Transformer FS: One model for all language pairs

Results: Target languages are from the same family

Results: Target languages are from the same family

BLEU Scores

- GNMT NS \ll GNMT FS $<$ TF NS \ll TF FS

Results: Target languages are from different families

Results: Target languages are from different families

BLEU Scores

- GNMT NS $<$ GNMT FS $<\approx$ TF NS
- TF NS \geq TF FS for $\mathrm{En} \rightarrow \mathrm{De}+\mathrm{Tr}$
- TF NS \approx TF FS for $\mathrm{En} \rightarrow \mathrm{De}+\mathrm{Ja}$

Results: Target languages are from the same family

Transformer Partial Sharing: $\boldsymbol{\Theta}=\left\{\boldsymbol{W}_{E}\right\}$

BLEU Scores:

- TF FS $>$ TF PS for $\mathrm{En} \rightarrow \mathrm{Ro}+\mathrm{Fr}$
- TF FS \approx TF PS for $\mathrm{En} \rightarrow \mathrm{De}+\mathrm{NI}$

Results: Target languages are from different families

Transformer Partial Sharing: $\boldsymbol{\Theta}=\left\{\boldsymbol{W}_{E}\right\}$

BLEU Scores

- TF FS $<$ TF PS for $\mathrm{En} \rightarrow \mathrm{De}+\mathrm{Tr}$
- TF FS \approx TF PS for $\mathrm{En} \rightarrow \mathrm{De}+\mathrm{Ja}$

Results: Target languages are from the same family

Transformer Partial Sharing: $\boldsymbol{\Theta}=\left\{\boldsymbol{W}_{E}\right\}+\left\{\boldsymbol{\theta}_{E N C}\right\}$

BLEU Scores:

- TF FS $>$ TF PS for $\mathrm{En} \rightarrow \mathrm{Ro}+\mathrm{Fr}$ and $\mathrm{En} \rightarrow \mathrm{De}+\mathrm{NI}$

Results: Target languages are from different families

Transformer Partial Sharing: $\boldsymbol{\Theta}=\left\{\boldsymbol{W}_{E}\right\}+\left\{\boldsymbol{\theta}_{\text {ENC }}\right\}$

BLEU Scores:

- TF FS $<$ TF PS for $\mathrm{En} \rightarrow \mathrm{De}+\mathrm{Tr}$
- TF FS \approx TF PS for $\mathrm{En} \rightarrow \mathrm{De}+\mathrm{Ja}$

Results: Target languages are from the same family

Transformer Partial Sharing:
$\boldsymbol{\Theta}=\left\{\boldsymbol{W}_{E}, \boldsymbol{\theta}_{E N C}\right\}+\left\{\boldsymbol{W}_{L_{1}}, \boldsymbol{W}_{L_{2}}\right\}$

BLEU Scores:

- TF FS $>$ TF PS for $\mathrm{En} \rightarrow \mathrm{Ro}+\mathrm{Fr}$ and $\mathrm{En} \rightarrow \mathrm{De}+\mathrm{NI}$

Results: Target languages are from different families

Transformer Partial Sharing:

$$
\boldsymbol{\Theta}=\left\{\boldsymbol{W}_{E}, \boldsymbol{\theta}_{E N C}\right\}+\left\{\boldsymbol{W}_{L_{1}}, \boldsymbol{W}_{L_{2}}\right\}
$$

BLEU Scores:

- TF FS $<$ TF PS for En $\rightarrow \mathrm{De}+\mathrm{Tr}$ and $\mathrm{En} \rightarrow \mathrm{De}+\mathrm{Ja}$

Results: Target languages are from the same family

Transformer Partial Sharing:
$\boldsymbol{\Theta}=\left\{\boldsymbol{W}_{E}, \boldsymbol{\theta}_{E N C}\right\}+\left\{\boldsymbol{W}_{K}^{1}, \boldsymbol{W}_{Q}^{1}, \boldsymbol{W}_{V}^{1}, \boldsymbol{W}_{F}^{1}\right\}$

BLEU Scores:

- TF FS $>$ TF PS for $\mathrm{En} \rightarrow \mathrm{Ro}+\mathrm{Fr}$
- TF FS \approx TF PS for $\mathrm{En} \rightarrow \mathrm{De}+\mathrm{NI}$

Results: Target languages are from different families
Transformer Partial Sharing:
$\boldsymbol{\Theta}=\left\{\boldsymbol{W}_{E}, \boldsymbol{\theta}_{E N C}\right\}+\left\{\boldsymbol{W}_{K}^{1}, \boldsymbol{W}_{Q}^{1}, \boldsymbol{W}_{V}^{1}, \boldsymbol{W}_{F}^{1}\right\}$

BLEU Scores:

- TF FS $<$ TF PS for $\mathrm{En} \rightarrow \mathrm{De}+\mathrm{Tr}$
- TF FS \approx TF PS for $\mathrm{En} \rightarrow \mathrm{De}+\mathrm{Ja}$

Results: Target languages are from the same family

Transformer Partial Sharing:
$\boldsymbol{\Theta}=\left\{\boldsymbol{W}_{E}, \boldsymbol{\theta}_{E N C}\right\}+\left\{\boldsymbol{W}_{K}^{2}, \boldsymbol{W}_{Q}^{2}, \boldsymbol{W}_{V}^{2}, \boldsymbol{W}_{F}^{2}\right\}$

BLEU Scores:

- TF FS \approx TF PS for $\mathrm{En} \rightarrow \mathrm{Ro}+\mathrm{Fr}$ and $\mathrm{En} \rightarrow \mathrm{De}+\mathrm{NI}$

Results: Target languages are from different families

Transformer Partial Sharing:
$\boldsymbol{\Theta}=\left\{\boldsymbol{W}_{E}, \boldsymbol{\theta}_{E N C}\right\}+\left\{\boldsymbol{W}_{K}^{2}, \boldsymbol{W}_{Q}^{2}, \boldsymbol{W}_{V}^{2}, \boldsymbol{W}_{F}^{2}\right\}$

BLEU Scores:

- TF FS $<$ TF PS for $\mathrm{En} \rightarrow \mathrm{De}+\mathrm{Tr}$
- TF FS \approx TF PS for $\mathrm{En} \rightarrow \mathrm{De}+\mathrm{Ja}$

Results: Target languages are from the same family

Transformer Partial Sharing:
$\boldsymbol{\Theta}=\left\{\boldsymbol{W}_{E}, \boldsymbol{\theta}_{E N C}\right\}+\left\{\boldsymbol{W}_{K}^{1}, \boldsymbol{W}_{V}^{1}, \boldsymbol{W}_{K}^{2}, \boldsymbol{W}_{V}^{2}\right\}$

BLEU Scores:

- TF FS $>$ TF PS for $\mathrm{En} \rightarrow \mathrm{Ro}+\mathrm{Fr}$
- TF FS \approx TF PS for $\mathrm{En} \rightarrow \mathrm{De}+\mathrm{NI}$

Results: Target languages are from different families

Transformer Partial Sharing:

$$
\Theta=\left\{\boldsymbol{W}_{E}, \boldsymbol{\theta}_{E N C}\right\}+\left\{\boldsymbol{W}_{K}^{1}, \boldsymbol{W}_{V}^{1}, \boldsymbol{W}_{K}^{2}, \boldsymbol{W}_{V}^{2}\right\}
$$

BLEU Scores:

- TF FS $<$ TF PS for En $\rightarrow \mathrm{De}+\mathrm{Tr}$ and $\mathrm{En} \rightarrow \mathrm{De}+\mathrm{Ja}$

Results: Target languages are from the same family

Transformer Partial Sharing:
$\Theta=\left\{\boldsymbol{W}_{E}, \boldsymbol{\theta}_{E N C}\right\}+\left\{\boldsymbol{W}_{K}^{1}, \boldsymbol{W}_{Q}^{1}, \boldsymbol{W}_{K}^{2}, \boldsymbol{W}_{Q}^{2}\right\}$

BLEU Scores:

- TF FS \approx TF PS for $\mathrm{En} \rightarrow \mathrm{Ro}+\mathrm{Fr}$ and $\mathrm{En} \rightarrow \mathrm{De}+\mathrm{NI}$

Results: Target languages are from different families

Transformer Partial Sharing:
$\boldsymbol{\Theta}=\left\{\boldsymbol{W}_{E}, \boldsymbol{\theta}_{E N C}\right\}+\left\{\boldsymbol{W}_{K}^{1}, \boldsymbol{W}_{Q}^{1}, \boldsymbol{W}_{K}^{2}, \boldsymbol{W}_{Q}^{2}\right\}$

BLEU Scores:

- TF FS \ll TF PS for $\mathrm{En} \rightarrow \mathrm{De}+\mathrm{Tr}$ and $\mathrm{En} \rightarrow \mathrm{De}+\mathrm{Ja}$

Results: Target languages are from the same family

- Sharing all parameters leads to the best BLEU scores for $\mathrm{En} \rightarrow \mathrm{Ro}+\mathrm{Fr}$

Results: Target languages are from the same family

- Sharing all parameters leads to the best BLEU scores for En \rightarrow Ro+Fr
- Sharing only the key, query from both the decoder attention layers leads to the best BLEU scores for En $\rightarrow \mathrm{DE}+\mathrm{NL}$

Results: Target languages are from distant families

- Sharing all the parameters leads to a noticeable drop in the BLEU scores for both the considered language pairs.

Results: Target languages are from distant families

- Sharing all the parameters leads to a noticeable drop in the BLEU scores for both the considered language pairs.
- Sharing the key, query parameters results in a large increase in the BLEU scores.

Conclusions

- We explore parameter sharing strategies for multilingual translation using self-attentional models.

Conclusions

- We explore parameter sharing strategies for multilingual translation using self-attentional models.
- We examine the case when the target languages come from the same or distant language families.

Conclusions

- We explore parameter sharing strategies for multilingual translation using self-attentional models.
- We examine the case when the target languages come from the same or distant language families.
- The popular approach of full parameter sharing may perform well only when the target languages belong to the same family.

Conclusions

- We explore parameter sharing strategies for multilingual translation using self-attentional models.
- We examine the case when the target languages come from the same or distant language families.
- The popular approach of full parameter sharing may perform well only when the target languages belong to the same family.
- Partial parameter sharing of embedding, encoder, decoder's key, query weights is applicable to all kinds of language pairs.

Conclusions

- We explore parameter sharing strategies for multilingual translation using self-attentional models.
- We examine the case when the target languages come from the same or distant language families.
- The popular approach of full parameter sharing may perform well only when the target languages belong to the same family.
- Partial parameter sharing of embedding, encoder, decoder's key, query weights is applicable to all kinds of language pairs.
- Partial parameter sharing achieves the best BLEU scores when the target languages are from distant families.

Conclusions

- We explore parameter sharing strategies for multilingual translation using self-attentional models.
- We examine the case when the target languages come from the same or distant language families.
- The popular approach of full parameter sharing may perform well only when the target languages belong to the same family.
- Partial parameter sharing of embedding, encoder, decoder's key, query weights is applicable to all kinds of language pairs.
- Partial parameter sharing achieves the best BLEU scores when the target languages are from distant families.

Code: https://github.com/DevSinghSachan/multilingual_nmt

Conclusions

- We explore parameter sharing strategies for multilingual translation using self-attentional models.
- We examine the case when the target languages come from the same or distant language families.
- The popular approach of full parameter sharing may perform well only when the target languages belong to the same family.
- Partial parameter sharing of embedding, encoder, decoder's key, query weights is applicable to all kinds of language pairs.
- Partial parameter sharing achieves the best BLEU scores when the target languages are from distant families.

Code: https://github.com/DevSinghSachan/multilingual_nmt

[^0]: ${ }^{2}$ Google's Multilingual Neural Machine Translation System: Enabling Zero-Shot Translation, ACL 2017

[^1]: ${ }^{2}$ Google's Multilingual Neural Machine Translation System: Enabling Zero-Shot Translation, ACL 2017

[^2]: ${ }^{2}$ Google's Multilingual Neural Machine Translation System: Enabling Zero-Shot Translation, ACL 2017

[^3]: ${ }^{2}$ Google's Multilingual Neural Machine Translation System: Enabling Zero-Shot Translation, ACL 2017

