

Do Syntax Trees Help Pre-Trained Transformers Extract Information?

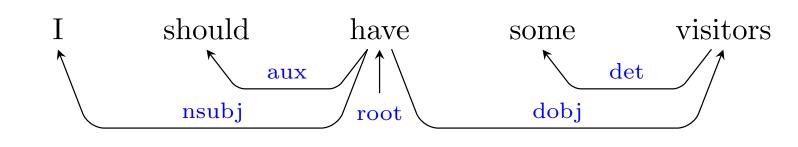
Devendra Singh Sachan^{1,2}, Yuhao Zhang³, Peng Qi³, William Hamilton^{1,2}

¹McGill University, ²Mila, ³Stanford University

sachande@mila.quebec

Introduction

Syntax Formalism: Dependency Tree



- Dependency tree encode a syntactic relation between words.
- Information extraction (IE) tasks have benefitted from the use of dependency trees.

Previous Work Utilizing Dependency Tree

- Based on randomly initialized sequence models + dependency tree encoders.
- Ex1: Graph convolutions applied to relation extraction (*Zhang et al. 2018*).
- Ex2: Biasing Transformer's self-attention with dependency tree (Strubell et al. 2018).
- Demonstrated significant improvements over linear sequence models.

Recent Work: Syntax Information within BERT

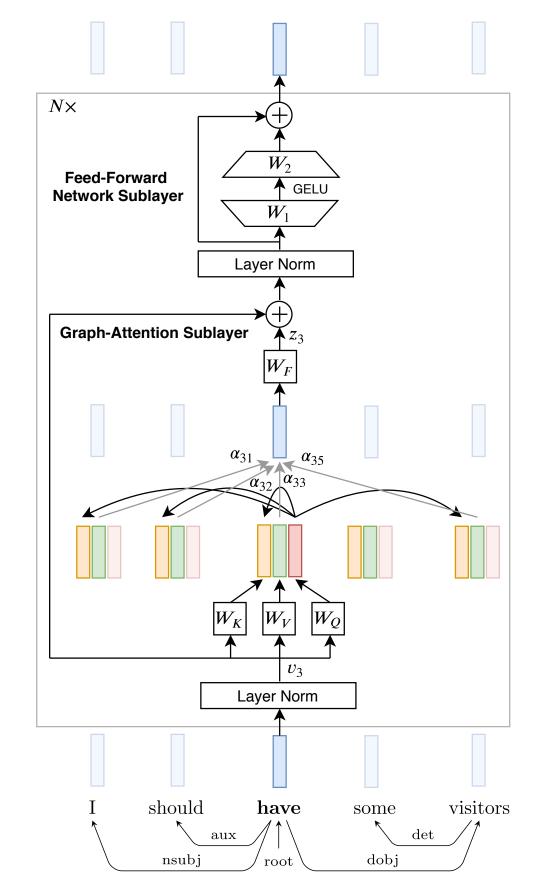
- Different linguistic information such as parsing, semantic roles is captured in different layers of BERT (*Tenney et al, 2019*).
- BERT's attention heads attend according to linguistic syntax (*Clark et al, 2019*).
- BERT's output representation embeds syntactic trees (Hewitt et al, 2019).

Research Question

Does external syntax information from dependency trees help BERT improve performance on *information extraction tasks*?

Methods

Syntax-GNN: Graph Encoder over Dependency Tree



- Modification of the Transformer encoder
- Self-attention → Graph attention

$$s_{ij} = (v_i \boldsymbol{W}_Q)(v_j \boldsymbol{W}_K)^{\top}$$
 interaction score

$$\alpha_{ij} = \frac{\exp(s_{ij})}{\sum_{k \in \mathcal{N}_i} \exp(s_{ik})}$$

$$graph-attention\ score$$

 $z_i = (\sum_i \alpha_{ij}(v_j \boldsymbol{W}_V)) \boldsymbol{W}_F$

aggregation

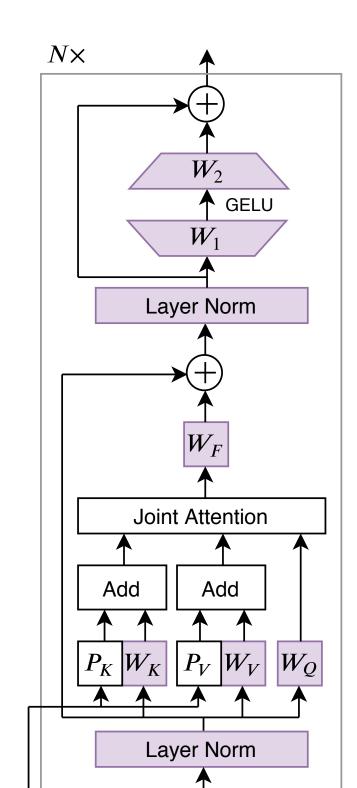
Syntax-Augmented BERT Models

Highway Gate Syntax-GNN BERT Model

| Wordpiece Embeddings

- Stack syntax-GNN over BERT.
- Highway gate selects useful representations.
- Add hidden states that map to the same linguistic token.

Joint Fusion



Previous Layer

Hidden States

Syntax-GNN

Hidden States

- Incorporate syntax-GNN representations within self-attention sublayer.
- Introduce two projection weights per layer $\{oldsymbol{P}_K, oldsymbol{P}_V\}$
- Project syntax-GNN representations and add with BERT layer's keys and values.
- Project syntax-GNN representations and add with BERT layer's keys and values.

Tasks and Datasets

Semantic Role Labeling

Assign semantic role labels to text spans.

Predicates are given.

Datasets:

- CoNLL-2005 WSJ
- CoNLL-2012 OntoNotes

Relation Extraction

Predict the relation between the two entity mentions.

Dataset:

- TACRED (label corrected)
- 41 relation types and a "no relation" type

Named Entity Recognition

Recognize and tag the named entities in a sentence.

Dataset:

OntoNotes 5.0

18 entity types

Examples

SRL: [$_{A0}$ He] [$_{AM-MOD}$ would] [$_{AM-NEG}$ n't] [$_{V}$ accept] [$_{A1}$ anything of value] from [$_{A2}$ those he was writing about] .

RE: Baldwin declined further comment, and said JetBlue chief executive Dave Barger was unavailable; Label: no relation

NER: [PERSON Laura] flew to [LOCATION Silicon Valley].

Results and Analysis

Impact of Parsing Quality

Three types of parses: (a) Gold parses: human annotated (b) Stanza parses: extracted from Stanza toolkit (c) In-domain parses: train a parser using gold parses

CoNLL-2005 SRL

Test Set	P	${f R}$	${f F}_1$				
Baseline Models (without dependency parses)							
$\mathrm{BERT}_{\mathrm{BASE}}$	87.0	88.0	87.5				
Stanza Dependency Parses (UAS: 84.2)							
Late Fusion	86.9	88.1	87.5				
Joint Fusion	86.9	87.9	87.4				
In-domain Dependency Parses (UAS: 92.7)							
Late Fusion	86.8	88.0	87.4				
Joint Fusion	87.1	88.0	87.5				
Gold Dependency Parses							
Late Fusion	89.2	91.1	90.1				
Joint Fusion	90.6	91.4	91.0				

CoNLL-2012 SRL

Test Set	P	R	${f F}_1$				
Baseline Models (without dependency parses)							
$\mathrm{BERT}_{\mathrm{BASE}}$	85.9	87.1	86.5				
Stanza Dependency Parses (UAS: 82.7)							
Late Fusion	85.7	87.2	86.5				
Joint Fusion	85.9	87.1	86.5				
In-domain Dependency Parses (UAS: 93.6)							
Late Fusion	86.1	86.9	86.5				
Joint Fusion	85.8	86.9	86.3				
Gold Dependency Parses							
Late Fusion	88.1	90.3	89.2				
Joint Fusion	89.3	90.4	$\boldsymbol{89.9}$				

- Using gold parses, syntax-augmented models achieve new best results.
- Stanza and in-domain parses are not much helpful for SRL.

Relation Extraction

Test Set	P	\mathbf{R}	${f F}_1$	
Baseline Models (without dependency parses)				
$\operatorname{BERT}_{\operatorname{BASE}}$	78.0	76.4	77.1	
Stanford CoreNLP Dependency Parses				
GCN^\dagger	74.2	69.3	71.7	
$GCN+BERT_{BASE}^{\dagger}$	74.8	74.1	74.5	
Late Fusion	78.6	76.3	77.4	
Joint Fusion	70.2	75.1	72.5	

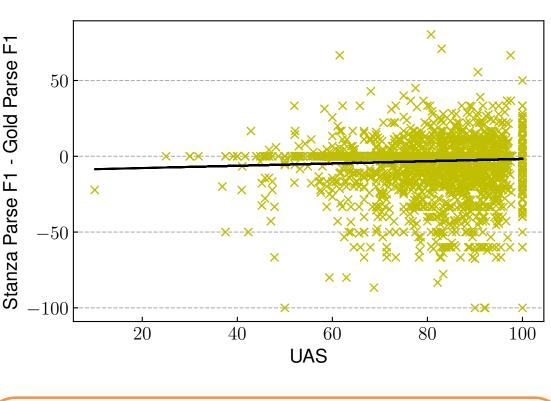
- Late Fusion improves over BERT by 0.3 F₁
- Extracted parses hurt performance of the Joint Fusion model.

Named Entity Recognition

Test Set	P	$\overline{\mathbf{R}}$	\mathbf{F}_1
Baseline Mod	dels (wi	thout de	pendency parses)
$BERT_{BASE}$	88.8	89.6	89.2
Stanza De	penden	cy Parse	s (UAS: 83.9)
Late Fusion	88.8	89.4	89.1
Joint Fusion	88.6	89.4	89.0
Go	ld Depe	endency .	Parses
Late Fusion	88.8	89.2	89.0
Joint Fusion	88.6	89.3	88.9

 No performance gains observed in syntax-augmented models on NER.

SRL: Parse Accuracy vs Performance



- Stanza Parse F1 Gold Parse F
- Small positive correlation between F₁
 difference and parse accuracy.
- Model trained on Stanza parses tends to rely less on the noisy parses.
- Inference is done using Stanza parses on a model trained with gold parses.
- The model trained on gold parses is more sensitive to Stanza parses.

Conclusions

- We obtain state-of-the-art results on SRL using gold dependency parses.
- Our results show marginal gains from using extracted parses on IE tasks.
- Syntax-augmented BERT models are sensitive to parse accuracy.