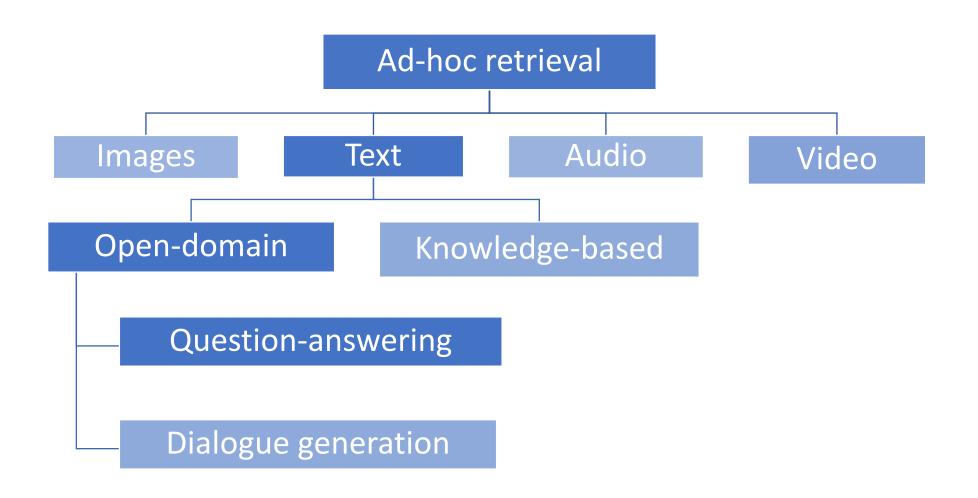


Zero-Shot Approach to Train Dense Retriever for Question Answering

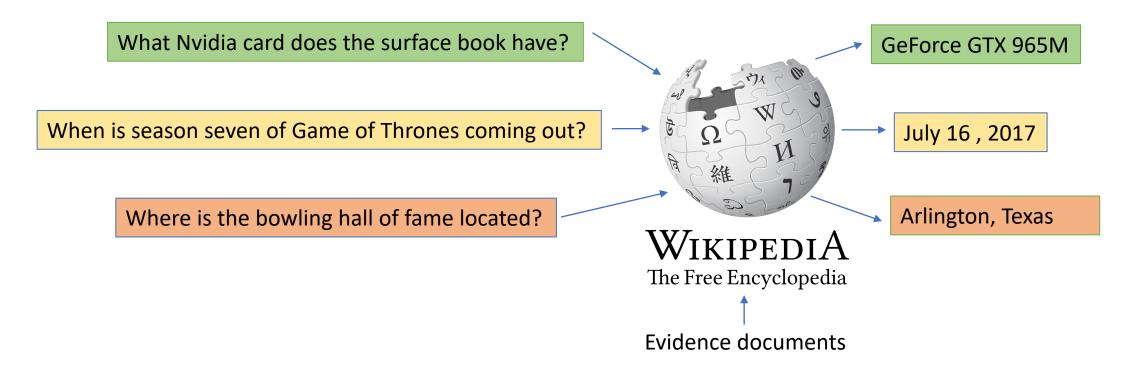
- Devendra Singh Sachan

Background: Terminology



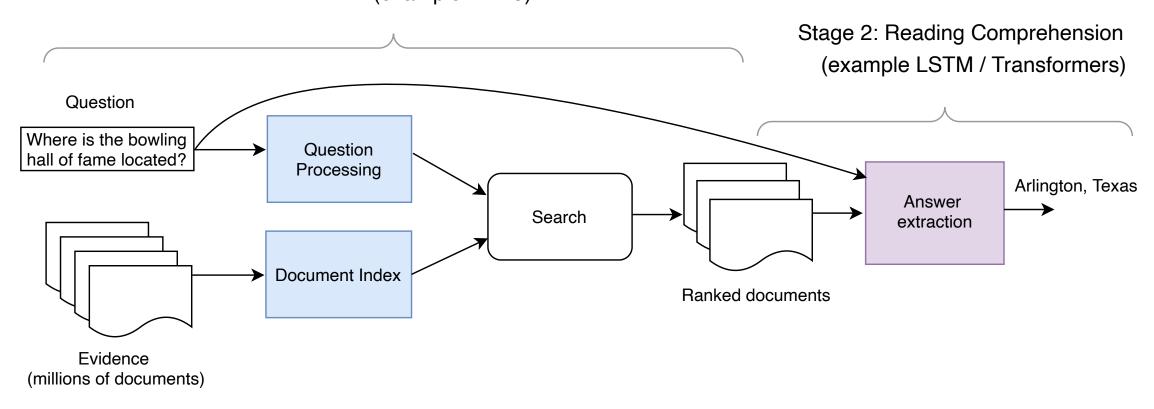
Background: Information-Seeking (factoid) Questions

- Input: Question (q) and evidence documents (D) such as Wikipedia (millions of documents)
- Output: Answer (a)



Open-Domain QA Pipeline (pre-2018)

Stage 1: Information Retrieval (example BM25)



Strong Baseline: BM25

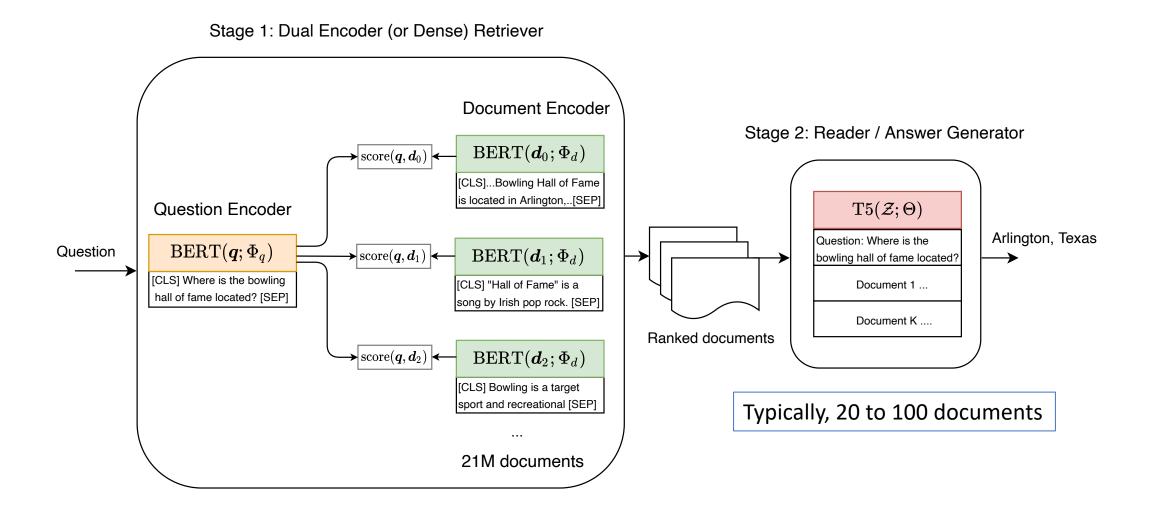
Sparse vector-space approach based on bag-of-words assumption

Given a query Q, containing keywords q_1, \ldots, q_n , the BM25 score of a document D is:

$$ext{score}(D,Q) = \sum_{i=1}^n ext{IDF}(q_i) \cdot rac{f(q_i,D) \cdot (k_1+1)}{f(q_i,D) + k_1 \cdot \left(1 - b + b \cdot rac{|D|}{ ext{avgdl}}
ight)}$$

- k₁ and b are hyper-parameters.
- Popular implementations: Gensim, Lucene

Neural Models for Open-Domain QA (post-2018)

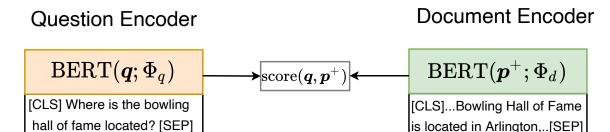


Review: DPR Training

Task: Train dual-encoder to improve retrieval accuracy

Training data: Question, positive, negative documents

$$\mathcal{D} = \{ \langle q_i, p_i^+, p_{i,1}^-, \dots, p_{i,n}^- \rangle \}_{i=1}^{\mathcal{T}}$$



score
$$(\boldsymbol{q}, \boldsymbol{d}_i; \Phi) = f_q(\boldsymbol{q}; \Phi_q)^{\top} f_d(\boldsymbol{d}_i; \Phi_d)$$

Contrastive Training Objective

$$L = -\log \frac{e^{\operatorname{score}(q_i, p_i^+)}}{e^{\operatorname{score}(q_i, p_i^+)} + \sum_{j=1}^n e^{\operatorname{score}(q_i, p_{ij}^-)}}$$

DPR Training: Impact

Training	Retriever		Top-20				Top-100				
		NQ	TriviaQA	ŴQ	TREC	SQuAD	NQ	TriviaQA	ŴQ	TREC	SQuAD
None	BM25	59.1	66.9	55.0	70.9	68.8	73.7	76.7	71.1	84.1	80.0
Single	DPR BM25 + DPR	78.4 76.6	79.4 79.8	73.2 71.0	79.8 85.2	63.2 71.5	85.4 83.8	85.0 84.5	81.4 80.5	89.1 92.7	77.2 81.3
Multi	DPR BM25 + DPR	79.4 78.0	78.8 79.9	75.0 74.7	89.1 88.5	51.6 66.2	86.0 83.9	84.7 84.4	82.9 82.3	93.9 94.1	67.6 78.6

- DPR obtains 10-20 points improvement over BM25 on multiple benchmarks
- This has led to good end-task performance such as QA
- Widely used since it was introduced (> 700 citations in last 2 years)

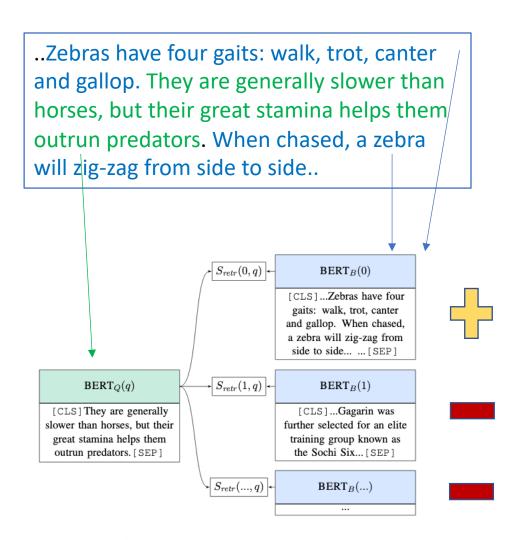
DPR Training: Limitations

- 1. Require aligned documents for training
 - Expensive to annotate thousands of positive documents for peak performance
- 2. Hard-negative documents: dependent on BM25 outputs
 - Needs to be pre-computed

3. Expensive GPU communication operations in forward pass when scaling up batch size

Review: Unsupervised (Dense) Approaches

- Sample a sentence from a paragraph.
- Sentence can be considered as the query.
- Remaining sentences can be considered as the *context*.
- Unsupervised can use all Wikipedia to train the model.
- Examples: ICT, Contriever



Summary: Unsupervised (Dense) Approaches

BM25 still a stronger baseline than dense unsupervised methods.

Large performance gap when compared with supervised approaches.

 Research Question: How can we improve unsupervised retrievers with minimal supervision?

Questions Are All You Need to Train a Dense Passage Retriever

Authors: Devendra Singh Sachan, Mike Lewis, Dani Yogatama, Luke Zettlemoyer, Joelle Pineau, and Manzil Zaheer

Mike Lewis

Dani Yogatama

Luke Zettlemoyer

Joelle Pineau

Manzil Zaheer

Autoencoding-based Retriever Training (ART)

Training Data: Uses only questions and evidence documents

$$\mathcal{D} = \{q_i\}_{i=1}^{\mathcal{T}}$$

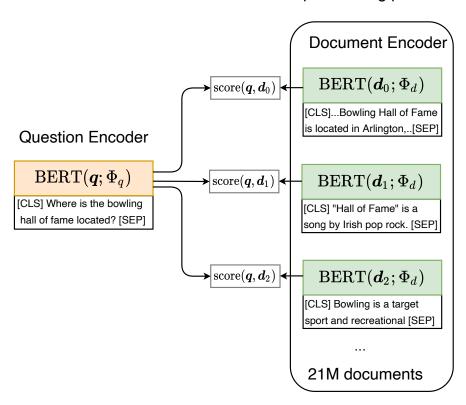
• Auto-encoder Intuition: Retrieve using and generate the same question

	DPR	Our Method
Zero-shot	×	√
BM25 negatives	\checkmark	×
Simplified training	×	✓

We address DPR training limitations in our work and just use only questions

Step 1a. Compute question similarity with all evidence documents

Pre-computed using previous weights



Evidence Documents

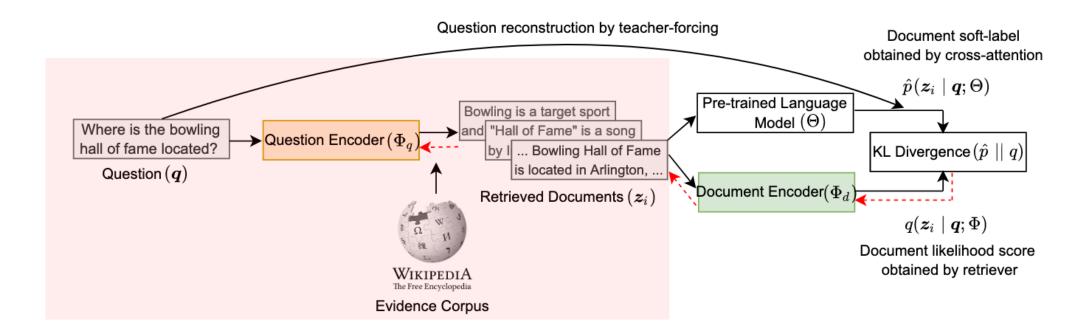
$$\mathcal{D} = \{ oldsymbol{d}_1, \dots, oldsymbol{d}_M \}$$

$$score(\boldsymbol{q}, \boldsymbol{d}_i; \Phi) = f_q(\boldsymbol{q}; \Phi_q)^{\top} f_d(\boldsymbol{d}_i; \Phi_d)$$

Dot-product is highly optimized on GPUs

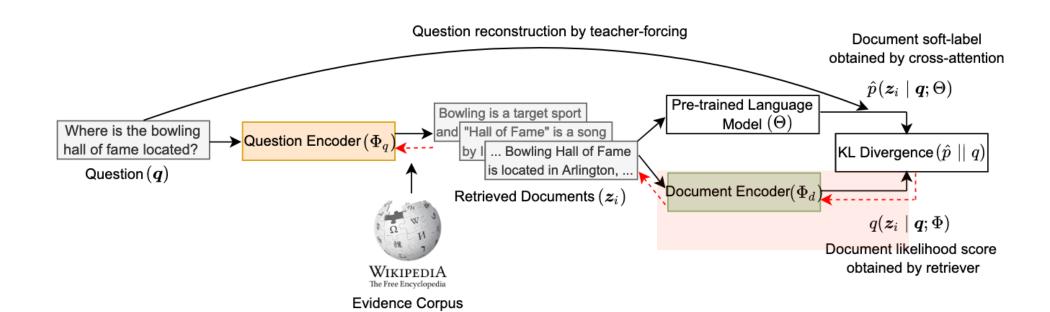
Step 1b. Select top-K documents with highest scores

$$\mathcal{Z} = \{oldsymbol{z}_1, \dots, oldsymbol{z}_K\}$$



Step 2a. Calculate scores using "current" document encoder weights

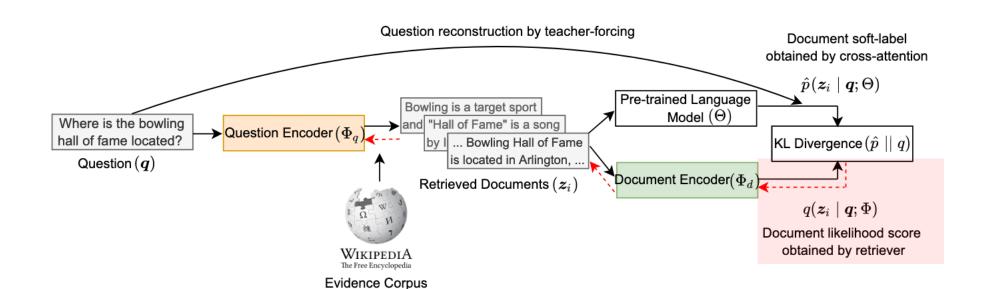
$$score(\boldsymbol{q}, \boldsymbol{z}_i; \Phi) = f_q(\boldsymbol{q}; \Phi_q)^{\top} f_d(\boldsymbol{z}_i; \Phi_d)$$



16

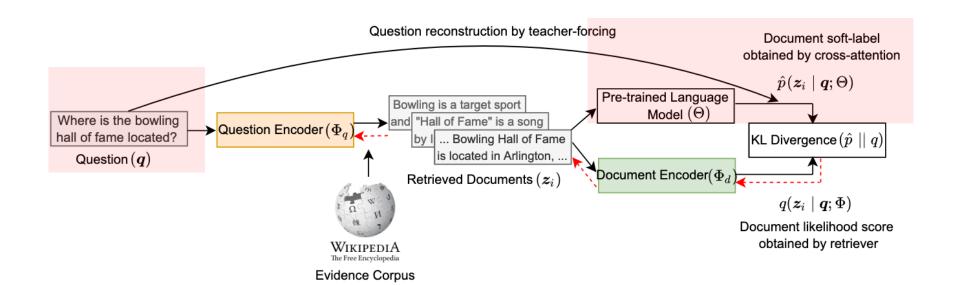
Step 2b. Calculate retriever distribution

$$q(\boldsymbol{z}_i \mid \boldsymbol{q}, \mathcal{Z}; \Phi) \propto \operatorname{score}(\boldsymbol{q}, \boldsymbol{z}_i)$$
$$q(\boldsymbol{z}_i \mid \boldsymbol{q}, \mathcal{Z}; \Phi) = \frac{\exp(\operatorname{score}(\boldsymbol{q}, \boldsymbol{z}_i)/\tau)}{\sum_{j=1}^{K} \exp(\operatorname{score}(\boldsymbol{q}, \boldsymbol{z}_j)/\tau)}$$



Step 3a. PLM relevance score calculation by question reconstruction

$$\log p(\boldsymbol{z}_i \mid \boldsymbol{q}; \Theta) \propto \frac{1}{|\boldsymbol{q}|} \sum_{t} \log p(q_t \mid \boldsymbol{q}_{< t}, \boldsymbol{z}_i; \Theta)$$



PLM Relevance Score: Details

PLM relevance score calculation by question reconstruction

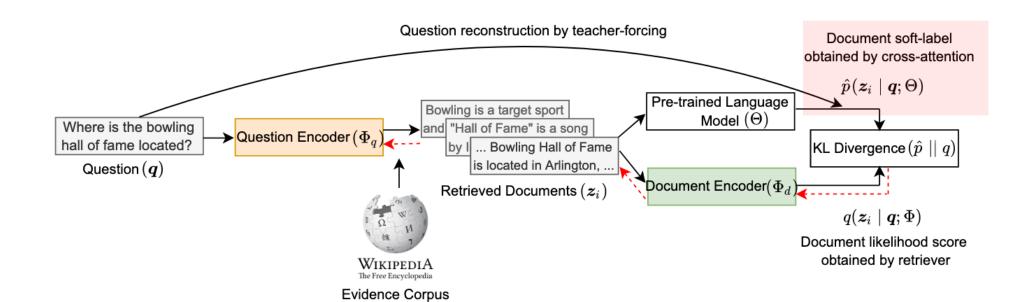
$$\log p(\boldsymbol{z}_i \mid \boldsymbol{q}; \Theta) \propto \frac{1}{|\boldsymbol{q}|} \sum_{t} \log p(q_t \mid \boldsymbol{q}_{< t}, \boldsymbol{z}_i; \Theta)$$

- Accurate: cross-attention between question and document
- Unsupervised: just perform inference using PLM
- Choice of PLM is important, we use T0-3B

Step 3b. Calculate distribution over PLM scores

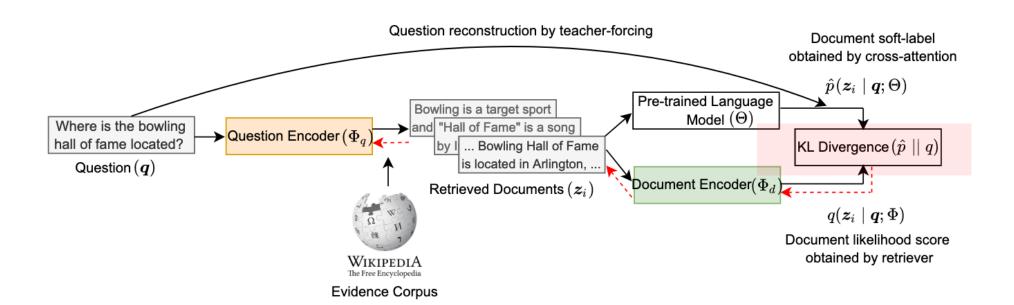
$$\hat{p}(\boldsymbol{z}_i \mid \boldsymbol{q}, \boldsymbol{\mathcal{Z}}) \propto \log p(\boldsymbol{z}_i \mid \boldsymbol{q}; \boldsymbol{\Theta})$$

$$\hat{p}(\boldsymbol{z}_i \mid \boldsymbol{q}, \mathcal{Z}) = \frac{\exp(\log p(\boldsymbol{z}_i \mid \boldsymbol{q}; \Theta))}{\sum_{j=1}^{K} \exp(\log p(\boldsymbol{z}_j \mid \boldsymbol{q}; \Theta))}$$

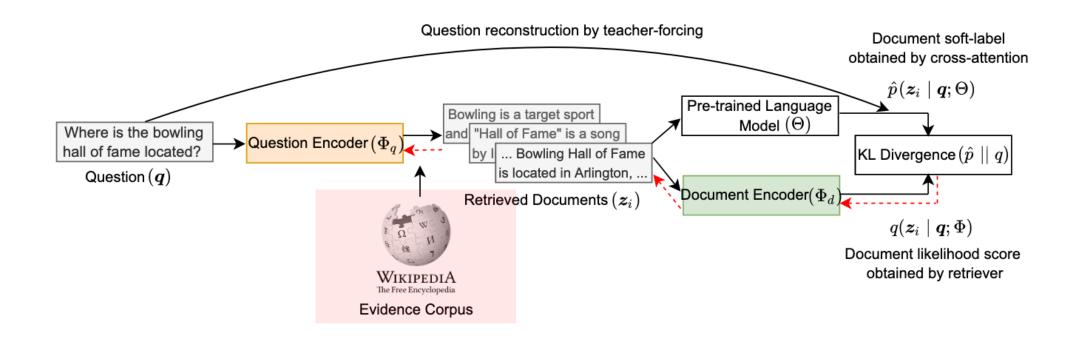


Step 4: Loss calculation and backpropagation

$$\mathcal{L}(\Phi) = \frac{1}{|\mathcal{T}|} \sum_{\boldsymbol{q} \in \mathcal{T}} \mathbb{KL}(\hat{p}(\boldsymbol{z}_i \mid \boldsymbol{q}, \mathcal{Z}) \mid\mid q(\boldsymbol{z}_i \mid \boldsymbol{q}, \mathcal{Z}; \Phi))$$



Step 5: Periodically update (stale) evidence embeddings



Experiments: Passage Retrieval for QA

We follow DPR-paper experiments style

QA datasets

- 1. Squad-Open (~78K)
- 2. TriviaQA (~79K)
- 3. NQ-Open: Natural Questions (~79K)
- 4. WebQ: WebQuestions (~3K)

Training Details:

- Relevance scorer **PLM**: T0-3B
- Top-32 documents retrieval
- Batch Size: 64
- GPUs: 8 / 16 A100

Evidence:

- English Wikipedia (2018)
- Each article is segmented into 100 words documents (or passages)
- ~21M documents

Baselines

- Unsupervised: trained using Wikipedia text or non-trainable
 - 1. BM25
 - 2. Contriever

- Supervised: trained using aligned question-document pairs
 - 1. DPR
 - 2. ANCE

Results: QA Passage Retrieval

Evaluation Metric

Top-20 accuracy: fraction of questions for which the answer span exists in one of the top-20 documents

Retriever	Zero-Shot	SQuAD-Open	TriviaQA	NQ-Open	WebQ
BM25	√	71.1	76.4	62.9	62.4
Contriever	\checkmark	63.4	73.9	67.9	65.7
DPR		63.2	79.4	78.4	73.2
ANCE		-	80.3	81.9	-
ART	√	75.3	82.9	81.6	75.7

- ART outperforms previous unsupervised methods by 4-12 points
- ART matches or exceeds performance of supervised models

Results: Single Retriever Training

Evaluation Metric: top-20 accuracy

Retriever	Training Dataset	SQuAD-Open	TriviaQA	Web Questions
BM25	-	71.1	76.4	62.4
DPR	NQ-Open	48.9	69.0	68.8
ART	NQ-Open	68.4	79.8	73.4
		Training on All	Datasets	
DPR	Multi	51.6	78.8	75.0
ART	Multi	74.7	82.9	76.6

- Improved transfer results on datasets not trained on
- Single model trained on all datasets achieves good results

Real-User Questions

NQ-Open: All questions contain short answers

NQ-Full: Real user questions; practical setting

- Short answers
- Long answers (e.g., paragraphs)
- Yes / No answers
- Questions do not have the answer in Wikipedia
- Ambiguous questions

	# Questions
NQ-Open	~79K
NQ-Full	~307K

In NQ-Full, > 51% of questions are unanswerable

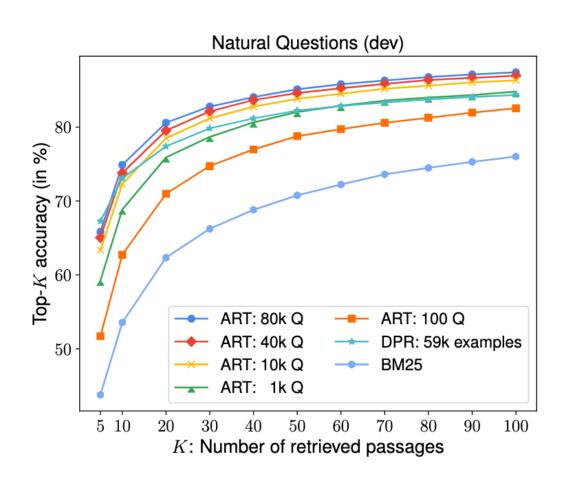
Results: Robustness to Unanswerable Questions

Evaluation Metric: Top-20 accuracy

Method	Training Dataset	SQuAD-Open	TriviaQA	WebQ	
	Trainin	g on answerable o	questions		
BM25	-	71.1	76.4	62.4	
DPR	NQ-Open	48.9	69.0	68.8	
ART	NQ-Open	68.4	79.8	73.4	
Training on a mix of answerable and unanswerable questions					
ART	NQ-Full	69.4	80.3	74.3	

- ART can be trained on both answerable and unanswerable questions
- Small gain in performance

Results: Sample Efficiency



- ART is more sample efficient than DPR
- Outperforms BM25 with just 100 questions

Analysis: Impact of PLM Training

PLM training style

- Denoising spans
 - Ex: T5, BART
- Autoregressive generative training
 - Ex: GPT, T5-lm-adapt
- Instruction-tuning
 - Ex: TO, FLANN

	NQ-Open (dev)						
Language Model (Θ)	Top-1	Top-5	Top-20	Top-100			
Models trained i	using Dei	noising M	lasked Sp	ans			
T5-base (250M)	12.8	30.9	47.8	63.0			
T5-xl (3B)	25.0	53.9	74.4	85.3			
Models trained usi	ng Langi	age Mod	leling Obj	ective			
T5-lm-adapt (250M)	29.4	56.6	74.4	84.7			
T5-lm-adapt (800M)	30.9	59.1	76.5	85.9			
T5-lm-adapt (3B)	31.8	61.0	77.9	86.5			
Model trained usin	ig Natura	l Langua	ige Instruc	ctions			
T0-3B	36.7	65.8	80.6	87.4			

- Instruction-tuned language models are the most effective as relevance scorers
- Accuracy improves with larger PLMs

Analysis: Why Top-K Document Retrieval

In the top-K documents, we include:

- **U**: uniformly sampled document
- P: Positive document
- **N**: hard-negative document
- **IB**: In-batch training

P	N	U	IB	Top-1	Top-5	Top-20	Top-100
0	0	32	Х	6.0	16.6	30.8	46.7
1	0	31	X	31.8	58.9	74.8	84.4
1	1	30	X	33.7	61.0	76.0	85.5
1	1	0	✓	32.6	59.5	75.1	84.9
T	op-32	2 pass	ages	36.7	65.8	80.6	87.4

Retrieving top-K documents during training is crucial for good performance

Analysis: Limitations

A Closer Comparison with Supervised Models

Supervised Baselines

- DPR: finetunes dual-encoder
- EMDR²: finetunes both PLM and dualenceder using end-to-end training

Retriever	Top-1	Top-5	Top-20	Top-100				
NQ-Open (dev)								
DPR	50.1	69.6	79.1	85.5				
$EMDR^2$	55.3	74.9	83.1	88.0				
ART	37.6	66.8	81.0	87.8				
TriviaQA (dev)								
DPR	59.6	74.4	81.1	85.9				
$EMDR^2$	63.7	78.0	83.7	87.4				
ART	58.3	77.5	83.7	87.5				

ART lags in top-1 and top-5 retrieval accuracy

Analysis: Importance of Question Reconstruction

Option 1: Likelihood of autoregressive question reconstruction

$$\log p(\boldsymbol{z}_i \mid \boldsymbol{q}; \Theta) \propto \frac{1}{|\boldsymbol{q}|} \sum_t \log p(q_t \mid \boldsymbol{q}_{< t}, \boldsymbol{z}_i; \Theta)$$

Option 2: Likelihood of autoregressive document reconstruction

$$\log p(\boldsymbol{z}_i \mid \boldsymbol{q}; \Theta) \propto \frac{1}{|\boldsymbol{z_i}|} \sum_{t} \log p(z_t \mid \boldsymbol{z}_{i < t}, \boldsymbol{q}; \Theta)$$

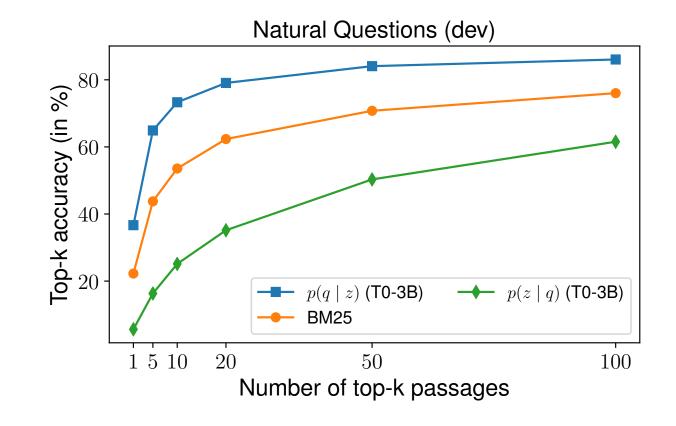
Analysis: Importance of Question Reconstruction

Experiment: re-rank top-1000 documents from BM25 using T0-3B

Baseline: BM25

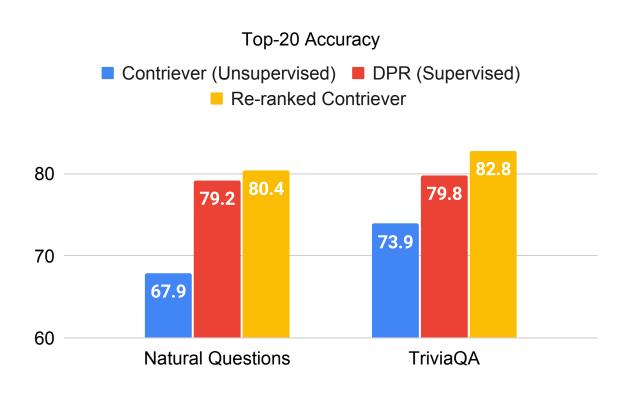
p(q | z): Likelihood of question tokens

p(z | q): Likelihood of document tokens



Question reconstruction i.e., $p(q \mid z) > BM25 > Document reconstruction i.e., <math>p(z \mid q)$

Unsupervised Re-ranking using Question Reconstruction



- Re-ranking top-1000 passages from Contriever using T0-3B PLM
- Better performance than DPR

Analysis: Effect of Retriever Initialization

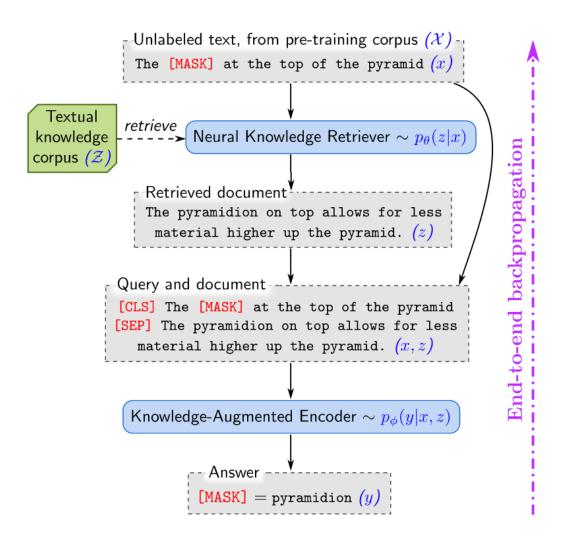
Retriever is initialized using

- 1. BERT
- 2. Inverse Cloze Task (ICT)
- 3. Masked Salient Spans (MSS)

Natural Questions (dev) 80 Top-20 accuracy (in %) 60 40 MSS init ICT init 20 **BERT** init $\times 10^3$ Training steps

ART is robust to retriever initialization

Review: Pre-training using Masked Salient Span (MSS)



Masked Salient Span (MSS) task:

- Identify salient spans such as named entities in sentences
- Mask salient spans and predict using retrieved documents

Discussion: MSS or ART style training?

Top-20 accuracy

Model	Training Task	NQ-Open	TriviaQA
REALM	MSS	59.8	68.2
ART	Question Reconstruction	81.6	82.9

- MSS is not an ideal proxy task to train retriever
- ART based on questions is a **promising** alternative

Some Ideas for Future Work

1. Application to low-resource settings such as *multi-lingual and cross-lingual retrieval*

2. Application to cross-modality retrievers such as *image and code* retrieval using text

3. New approaches to improve **top-1** and **top-5** retrieval accuracy

Questions / Discussion

Paper: https://arxiv.org/abs/2206.10658

Code: https://github.com/DevSinghSachan/art

E-mail: sachan.devendra@gmail.com

Thank you!